OAKYNTET 3A UHOOPMATUYKU HAYKH

I YHugepsutet,CB. Kupun n Metognj” - Ckonje
N KOMIUYTEPCKO MHXEHEPCTBO

Structured programming

Exercises 11

Table of Contents

L FIleS o e 1
1.1. Remainders from lecturesttt e 1
1.2, Problem d. .. 2
1.3, Problem 2. ... e 3
1.4 Problem 3. ... 4
1.5, Problem 4. .. 6
1.6. Problem 5. .. e 7
1.7.Problem 6. e 8

2. Source code of the examples and problems i, 10

Structured programming

1. Files

1.1. Remainders from lectures

* Processing files includes writing, reading and changing contents of files to some

standard media as disk.
* Processing files in C is done using the struct FILE defined in stdio.h.

 To start processing the file first it must be open using the function fopen that

returns pointer to the struct FILEx.

1.1.1. Opening file for reading/writing

Function for opening file:

FILEx fopen(const charx file_path, const charx mode);
file_path - full path of the file we want to open

mode - opening mode

1.1.2. Modes of opening files

Mode Meaning

r Opens existing file only for reading

w Opens existing file for writing (the file must exist)

a Opens existing file for appending (the file must exist)

r+ Opents file for reading and writing at the beginning of the file
W Opents file for reading and writing (deletes the contents of the file)
a+t Opents file for reading and writing (appends at the end of the file if it

exists)
Example of opening file

FILEx fp = fopen("test.txt", "r");

* Opens the file "test.txt" in reading mode.

* To open in binary mode b should be appended at the mode of opening ex rb.

1.Files | 1

Structured programming

1.1.3. Closing file

Function for closing file:
int fclose(FILE*x fp);
fp - pointer to FILE we want to close
Example of closing file

fclose(fp);

» After the end of processing, the file should be closed using the function fclose ()

* Calling this functions closes the file associated with the file pointer fp passed as

argument

1.1.4. Reading and writing from/to file

Functions for reading from file:
int fscanf(FILEx fp, "format_specifier", arguments_list);
int fgetc(FILEx fp);

char* fgets(charx str, int num, FILEx fp);

Functions for writing to files:
int fprintf(FILEx fp, "format_specifier", arguments_Llist);

int fputc(char c, FILEx fp);

int fputs(const charx str, FILEx fp); -

1.2. Problem 1

Write a program that for given textual file text. txt will find the ratio of

vowel/consonants.

Example

2 | 1.2. Problem 1

Structured programming

If the file text. txt has the following contents:

Hello, how are you?

I'm
I'm

OK. How about you?
fine too.

then the output should be:

Ratio vowels/consonats: 20/18 = 1.11

Solution p11_1_en.c

#include <stdio.h>

int
}

int

int

1.3.

is_letter(char c) {
return (c >= 'a' & c <= 'z'") || (c >= 'A' && c <= 'Z");

is_vowel(char c) {
c = tolower(c);
switch (c) {

case 'a':

case
case
case
case

a
Iel:
I-il:
'o':
Iul:

return 1;
default:
return 0;

}

main() {
char c;
int consonants = 0, vowels = 0}
FILE *dat;
// Opening file for reading
if ((dat = fopen("text.txt", "r")) == NULL) {
printf("The file “text.txt' can not be opened.\n");
return -1;
}
// Reading char by char until EndOfFile (EOF)
while ((c = fgetc(dat)) != EOF) {
if (is_letter(c)) {
if (is_vowel(c))
vowels++;
else
consonants++;
}
}
fclose(dat);
printf("Ratio vowels/consonants: %d/%d = %5.2f\n", vowels, consonants,
(float) vowels / consonants);
return 0;

Problem 2

Write a program that each row from given input file input. txt will copy in other file

output.txt, so that for each row from input.txt will add one more with the length

of that row. Each row can have at most 80 characters.

1.3. Problem 2 | 3

Structured programming

Example

If the file input. txt has the following contents:

I'm learning Structured Programming.
When is the second midterm?
I don't know, still it is not published on the web.

TOTalll II0 U3BPITYBAILETO HaA IIPOTpaMaTa COAPKHMHATA Ha JaTOTeKaTa izlezna.txt

Tpeba /1a 6ue cegHaBa:

36

I'm learning Structured Programming.

27

When is the second midterm?

51

I don't know, still it is not published on the web.

Solution p11_2_en.c

#include <stdio.h>
#define MAX 81

int main() {
char row[MAX], *c;
FILE *input, *output;
if ((input = fopen("input.txt", "r")) == NULL) {
printf("The file "%s' can not be opened.\n", "dinput.txt");
return -1;

}

if ((output = fopen("output.txt", "w'")) == NULL) {
printf("The file "%s' can not be opened.\n", "output.txt");
return -1;

}

while ((fgets(row, MAX, {dinput)) != NULL) {
int br = strlen(row);
fprintf(output, "%d\n%s'", br, row);

}

fclose(input);

fclose(output);

return 0;

1.4. Problem 3

Write a program that will read elements of a matrix written in text file with name
matl.txt. In the first line of the file are written the number of rows and columns of
the matrix. Each element of the matrix is floating point number written in separate
line. The transposed matrix write in a new output file mat2. txt using the same

format.

Example

4 | 1.4. Problem 3

Structured programming

If the file mat1l. txt has the following content:

HFwWOoobhwWNEHUOMWDNDW
OO, WNEDMWNED

then at the end of the execution of the program, the file mat2. txt should have the

following content:

HAOWWAONWOOREND
0OhrDOWWUNNOKFEREW

1.4. Problem 3 | 5

Structured programming

Solution p11_3_en.c

#include <stdio.h>

#include <stdlib.h>

#define MAX 100

int main() {
int i, j, m, n;
float a[MAX][MAX], b[MAX][MAX];
FILE *input, *output;

if ((input = fopen("matl.txt", "r")) == NULL) {
printf("The file "matl.txt can not be opened!\n");
exit(1l);

}
if (!feof(input))
fscanf (input, "%d %d", &m, &n);

if ((m > MAX) || (n > MAX)) {
printf("Very large matrix!");
return (-1);
}
for (i = 0; 1 < m && !feof(input); i++)
for (j = 0; j < n && !feof(input); j++)
fscanf(input, "%f", &a[il[jl1);
fclose(input);
G = m g = o
printf("Not enough data in the file!");
return (-1);
}
for (i = 03 1 < mj; d++)
for (3 = 0; J < nj j++)
b[J1[i]1 = ali1[31;

if ((output = fopen("mat2.txt", "w'")) == NULL) {
printf("The file "mat2.txt can not be opened!\n");
exit(1l);

3

fprintf(output, "%d %d\n", n, m); /* reverse %/
for (i = 0; i < nj; i++)
for (3 = 05 j < m; j++)
fprintf(output, "%7.2f\n", b[i][j]);
fclose(output);
return (0);

1.5. Problem 4

Given is the file SP_example. txt. Write a program that will read the file and will

print the number of rows with more than 10 vowels, and the total vowels in the file.

Example

If the file SP_example. txt has the following content:

Zdravo, kako si?

Eve, dobro sum. A ti?

I jas dobro. Kako se tvoite? Ima 1li neshto novo?
Dobri se i tie. Si kupiv avtomobil.

then the program should print:

6 | 1.5. Problem 4

Structured programming

Total 2 rows have more than 10 vowels.
The file has total 38 vowels.

Solution p11_4_en.c

#include <stdio.h>
#include <stdlib.h>
int dis_vowel(char c) {
return ¢ == 'a' || ¢ == 'e' || ¢ == "' || ¢ == 'o' || c == 'u';
}
int main() {
int row = 0, total = 0;
FILE *dat; char c;
if ((dat = fopen("SP_example.txt", "r")) == NULL) {
printf("The file "SP_example.txt’ can not be opened");
exit(-1);
}
int vowels = 0;
while ((c = fgetc(dat)) != EOF) {
if(is_vowel(tolower(c))) {
++vowels;
++total;
}
if (c == "\n") {
if (vowels > 10) {
row++;
3
vowels = 0;
3
3
printf("Total of %d rows has more than 10 vowels\n", row);
printf("The file has total %d vowels.\n", total);
return 0;

1.6. Problem 5

Write a program that for given file words. txt will print all the words that have three
or more equal letters (some letter occurs three or more times). The comparison of
letters is not case sensitive. At the end it should print the count of words that satisfy

this condition.

The file contains one word per row. Each word is composed only from letters. The

maximal length of a word is 20 chars.

Example

If the file words. txt has the follwoing content:

banana
jabolko
Obratnoto
binarnata
dekadniot
Kopakabana

1.6. Problem 5 | 7

Structured programming
then the program should print:

banana
Obratnoto
binarnata
Kopakabana
Total 4 words.

Solution p11_5_en.c

#include <stdio.h>
#include <ctype.h>
#define SIZE 21

int has_more_than_2eq(char *w) {
char *c;
int equal;
while (*xw) {
c=w+ 1;
equal = 1;
while (xc) {
if (tolower (*w) == tolower(*c))
equal++;
ct+;

}

if (equal > 2)
return 1;

wt+

}

return 0;

int main() {
char word[SIZE];
FILE *f;
int words_count = 0}
if ((f = fopen("words.txt", "r")) == NULL) {
printf("The file ‘words.txt' can not be opened.\n");
return -1;

}
while (fgets(word, SIZE, f) != NULL) {
if (has_more_than_2eq(word)) {
puts(word) ;
words_count++;

3
3

printf("\nTotal %d words.\n", words_count);
fclose(f);
return 0;

1.7. Problem 6

Write a program that will print the count of occurrences of a word composed only

from digits (read from SI) in a file named dat. txt.

Example

If we read the word

123

8 | 1.7. Problem 6

Structured programming
and if the file dat. txt has the following content:

Zdravo 123, kako si?

Eve 321, dobro sum. A ti?

I jas dobro. Kako se tvoite 123? Ima 1li neshto novo? 123
Dobri se i tie. Si kupiv avtomobil.

then it should print:

The word 123 occurs 3 times 1in the file.

Solution p11_6_en.c

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
int main() {
char c;
int occurrences = 0}
FILE *file;
if ((file = fopen("dat.txt", "r")) == NULL) {
printf("The file ‘dat.txt’ can not be opened!\n");
exit(-1);
}
char word[50];
printf("Enter word for searching:");
gets(word);
int i = 0, counter = 0;
while ((c = fgetc(file)) != EOF) {
if (isdigit(c)) {
if (¢ != word[i++]) {
if (counter == strlen(word)) {
occurrences++;

}
counter = 0;
i = 03

} else {
counter++;

}

} else {

if (counter == strlen(word)) {
occurrences++;

}

counter = 0;

i = 03

}

printf("The word "%s’ occurs %d times in the file\n", word, occurrences);

return 0;

1.7. Problem 6 | 9

Structured programming

2. Source code of the examples and problems

https://github.com/finki-mk/SP/ Source code ZIP

10 | 2. Source code of the examples and problems

https://github.com/finki-mk/SP/
https://finki-mk.github.io/SP/sources/sp_av11_src_en.zip

	Structured programming
	Table of Contents
	1. Files
	1.1. Remainders from lectures
	1.2. Problem 1
	1.3. Problem 2
	1.4. Problem 3
	1.5. Problem 4
	1.6. Problem 5
	1.7. Problem 6

	2. Source code of the examples and problems

