FACULTY OF COMPUTER

I "Ss. Cyril and Methodius" University in Skopje
SCIENCE AND ENGINEERING

Object oriented programming

Exercises 10

Version 1.0, 4 May, 2017

Table of Contents

1. Static members and eXCePtioNScouitiin i e
11 Problem e
1.2.Problem ..o
1.3 Problem e

2. Source code of the examples and problems. i,

Object oriented programming

1. Static members and exceptions

1.1. Problem

Each card payment has its advantages. The state, motivated to increase usage of cards,
offers better payment conditions. Model a class Card and classes Master and

Maestro that derive from it. A card is described with its ID and the balance.

On payment with Maestro card, on each payment there is a discount of 5% for ALL

users of the card. This percentage is fixed and can not be changed!

On paying with Master card, if the limit of the card is over 6000 MKD then the
discount is 10%, instead of the standard 3$ for cards with limit less then 6000 MKD.
The discount of 10% is same for ALL users, but it can be changed from the National

bank.

Solution oop_av101_en.cpp

#include<iostream>
#include<cstring>
using namespace std;

class Card {
private:
char id[16];
double balance;

public:
Card(charx id = "", double balance = 0) {
this->balance = balance;
strcpy (this->id, id);
}
void showBalance() {
cout << 1dd << ": " << balance << endl;

}

void deposit(double amount) {
this->balance += amount;

}

virtual double withdraw(double amount) {
if (this->balance > amount) {
this->balance -= amount;
return amount;

}
else return 0;
}
protected:

virtual double withdraw(double amount, double limit) {
if (this->balance + limit > amount) {
this->balance -= amount;
return amount;

}

else return 0;

}s

1. Static members and exceptions | 1

Object oriented programming

class Maestro : public Card {
private:
char password[10];
const static double discount; //static member of the class

public:
Maestro(char* password = "", char*x id = "", double balance = 0) : Card(id, balance) {
strcpy(this->password, password);
}

static double getPopust() { //static function accessing a static member
return discount;

}

double withdraw(double price) {
double amount = price x (1 - discount); // non-static functions can use static
members
// static data members
return Card::withdraw(amount);
}
15

const double Maestro::discount = 0.05; // initialization of static member

class Master : public Card {
private:
double Tlimit;
const static double discountl; // fixed discount

static double discount2; // discount that can be changed
public:
Master (double T1limit = 0, charx id = "", double balance = 0) : Card(id, balance) {

this->limit = limit;

}

static double getDiscountl() {
return discountl;

}

static double getDiscount2() {
return discount2;

}

static void setDiscount2(double discount2) {
Master::discount2 = discount2;

}

double withdraw(double price) {
if (this->limit < 6000) {
double amount = price x (1 - discountl);
return Card::withdraw(amount, limit);

}

else {
double amount = price x (1 - discount2);
return Card::withdraw(amount, limit);

}

}
s
const double Master::discountl = 0.03; // on initialization you do not write the keyword
static
double Master::discount2 = 0.1;

1.2. Problem

Create a class Register that should represent the register of a store where customers
can pay in cash or with card. Each register has two daily amounts, one for the cash
payments and other for the card payments. Also, each object from the class is created

on different day, so for each object we store the day, month and year when the

2 | 1.2. Problem

Object oriented programming
register is opened.

In the class Register there is a function pay () that enables accepting payments. For
cash payments there is function with definition pay (double) with the amount that

should be paid.

For payments with cards create a function with definition pay (double, Card&) that
as argument also accepts and a reference to the card for the payment. Calling this

function should update the balance of the register and the card.

In the class define a function show () that will show the information of the register.

Solution oop_av102_en.cpp

#include<iostream>
#include<cstring>
using namespace std;

class Card {
private:
char id[16];
double balance;

public:
Card(charx id = "", double balance = 0) {
this->balance = balance;
strcpy (this->id, id);

void showBalance() {
cout << id << ": " << balance << endl;

}

void deposit(double amount) {
this->balance += amount;

}

virtual double withdraw(double amount) {
if (this->balance > amount) {
this->balance -= amount;
return amount;

}
else return 0;
}
protected:

virtual double withdraw(double amount, double limit) {
if (this->balance + limit > amount) {
this->balance -= amount;
return amount;
}

else return 0;
s

class Maestro : public Card {
private:
char password[10];
const static double discount; //static member of the class

public:
Maestro(char* password = "", char*x id = "", double balance = 0) : Card(id, balance) {
strcpy (this->password, password);
}

static double getPopust() { //static function accessing a static member

1.2. Problem | 3

Object oriented programming

return discount;

}

double withdraw(double price) {
double amount = price x (1 - discount); // non-static functions can use static
members
// static data members
return Card::withdraw(amount);
}
15

const double Maestro::discount = 0.05; // initialization of static member

class Master : public Card {
private:
double Tlimit;
const static double discountl; // fixed discount

static double discount2; // discount that can be changed
public:
Master (double T1limit = 0, charx id = "", double balance = 0) : Card(id, balance) {

this->limit = limit;

}

static double getDiscountl() {
return discountl;

}

static double getDiscount2() {
return discount2;

}

static void setDiscount2(double discount2) {
Master::discount2 = discount2;

}

double withdraw(double price) {
if (this->limit < 6000) {
double amount = price x (1 - discountl);
return Card::withdraw(amount, limit);

}

else {
double amount = price x (1 - discount2);
return Card::withdraw(amount, limit);

}

}
s
const double Master::discountl = 0.03; // on initialization you do not write the keyword
static
double Master::discount2 = 0.1;

class Register {

private:
double cashBalance;
double cardBalance;
int day, month, year;

public:

Register (double cashBalance, int day, int month, int year) {
this->cashBalance = cashBalance;
this->cardBalance = 0;
this->day = day;
this->month = month;
this->year = year;

}

void pay(double amount) {
this->cashBalance += amount;

}

void pay(double amount, Card &c) {
this->cardBalance += c.pay(amount);

}

void show() {
cout << "Day: \t" << day << endl;

4 | 1.2. Problem

Object oriented programming

cout << "Month: \t" << month << endl;

cout << "Year: " << year << endl;

cout << "Balance: " << this->balance() << endl;
cout << endl;

}

double balance() {
return this->cardBalance + this->cashBalance;

}
s
int main() {
Register daily (10000, 22, 4, 2014);
Card xk;
daily.show();
cout << "Paying in cash!" << endl;
daily.pay(5000);
daily.show();
k = new Master (10000.00, "1234567890123456", 54000.00);
cout << "Paying with card!" << endl;
daily.pay(10000.00, *xk);
daily.show();
k = new Maestro("password", "1234567890123456", 54000.00);
cout << "Paying with card!" << endl;
daily.pay (10000, *k);
daily.show();
Master::setPopust2(0.07);
k = new Master (10000, "4567891234567890", 3000);
cout << "Paying with card!" << endl;
daily.pay (10000, *k);
daily.show();
return 0;

1.3. Problem

Part of the products in one store after the new policy must have some amount of
discount. For this purpose the system of the store should be extended with an abstract
class for Discount. This class should keep the course ratios of euros and dollars in

MKD and methods that each class that derives it should implement.

o float discount_price();
. float price();

o Void print_rule();

For each product Product keep the name and the price and implement constructor

and needed methods.
Products are divided in several types: FoodProduct, Drinks and Cosmetiics.

Following the new policy hte food is not on discount. The drinks, with alcohol and

with price larger than 20 euros have discount of 5%, and alcohol free from the brand

1.3. Problem | 5

Object oriented programming

Coca-Cola have discount of 10%. All cosmetic products with price larger than 5 euros
have discount of 12%, and those with price larger than 20 dollars have discount of
14%.

Compute the total price of all products with the discount.

Also, create a function changePrice(float) in the class Product that enables
changing the price of the product. If there is an attempt to set a negative price for the
product, throw an exception (object from class NegativeValueException). Handle
with the exception in the main function, where you list all the products of type

Cosmetics and change their price.

Solution oop_av103_en.cpp

#include <iostream>
#include <cstring>
using namespace std;

// exception class
class NegativeValueException {
private:
char text[50];
public:
NegativeValueException(char *text)
{
strcpy (this->text, text);
}
void print() { cout << text; }
}s

class Discount {
public:
static float euro;
static float dollar;
virtual float discount_price() = 0;
virtual float price() = 0;
virtual void print_rule() = 0;

s

float Discount::euro = 61.7;
float Discount::dollar = 44.5;

class Product {
protected:
char name[100];
float price;
public:
Product(const char xname = "", const float price = 0) {
strcpy (this->name, name);
this->price = price;
}
float getPrice() {
return price;
}
void print() {
cout << "Product{ name=" << name << ", price=" << price << "}" << endl;
}
void changePrice(float price) {
if (price < 0) throw NegativeValueException("You entered a negative price for the
exception!\n");
this->price = price;
}
}s

6 | 1.3. Problem

Object oriented programming

class Cosmetics : public Product, public Discount {
private:
int weight;
public:
Cosmetics(const char xname
const int weight
this->weight = weight;

""" const float price = 0,
0) : Product(name, price) {

}
float discount_price() {
if (getPrice() / Discount::dollar > 20)
return 0.86 * getPrice();
if (getPrice() / Discount::euro > 5)
return 0.88 * getPrice();
return getPrice();
}
float price() {
return getPrice();
}
void print_rule() {
cout << "All cosmetic products with price > 5 euro have discount of 12%, while
those with price > 20 dollars have discount 14%" << endl;
}
15

class FoodProduct : public Product, public Discount {
private:
float callories;
public:
FoodProduct(const char *name = "", const float price = 0,
const float callories = 0) : Product(name, price) {
this->callories = callories;

}

float discount_price() {
return getPrice();

}

float price() {
return getPrice();

}

void print_rule() {
cout << "No discount on food" << endl;
}
s

class Drinks : public Product, public Discount {
private:

char brand[100];

bool alcoholic;

public:
Drinks(const char *name = "", const float price = 0,
const char xbrand = "", const bool alcoholic = false) : Product(name, price) {
strcpy(this->brand, brand);
this->alcoholic = alcoholic;
}

float discount_price() {
if (this->alcoholic && (getPrice() / Discount::euro > 20))
return 0.95 * getPrice();
if (!this->alcoholic && (strcmp(this->brand, "Coca-Cola") == 0))
return 0.90 * getPrice();
return getPrice();
}
float price() { return getPrice(); }
void print_rule() {
cout << "All alcohol drinks with price > 20 euros have discount of 5%, while
alcohol free Coca-Cola have discount of 10% " << endl;
}
15

float total_discount(Discount *xd, int n) {
float discount = 0}
for (Aint i = 05 i < nj; ++i) {
discount += d[i]->discount_price();
cout << "Original price: " << d[i]->price() << endl;
cout << "Discounted: " << d[i]->discount_price() << endl;

1.3. Problem | 7

Object oriented programming

d[i]->print_rule();
}

return discount;

int main() {
int n = 03
float newPrice;
Discount *xd = new Discount*[10];

d[n++] = new FoodProduct("leb", 30);

d[n++] = new Drinks("viski", 1350, "Jack Daniel's", true);

d[n++] = new FoodProduct("sirenje", 390, 105);

d[n++] = new Drinks("votka", 850, "Finlandia", true);

d[n++] = new Cosmetics("krema", 720, 100);

d[n++] = new Drinks("sok", 50, "Coca-Cola", false);

d[n++] = new Cosmetics("parfem", 3500, 50);

cout << "Total price of all products is: " << total_discount(d, n) << endl;

cout << "Changing the price of the cosmetic products" << endl;
for (int i = 0; i < n; ++i) {
Cosmetics*x ¢ = dynamic_cast<Cosmetics *>(d[i]);
if (c = 0) {
c—>print();
cin >> newPrice;
try {
c->changePrice(newPrice);

}

catch (NegativeValueException i) {
i.print();

}

}

for (int i = 0; i < n; ++i) {
delete d[i];

}
delete[] d;

return 0;

8 | 1.3. Problem

Object oriented programming

2. Source code of the examples and problems

https://github.com/finki-mk/SP/

Source code ZIP

2. Source code of the examples and problems | 9

https://github.com/finki-mk/SP/
https://finki-mk.github.io/OOP/sources/oop_av10_src_en.zip

	Object oriented programming
	Table of Contents
	1. Static members and exceptions
	1.1. Problem
	1.2. Problem
	1.3. Problem

	2. Source code of the examples and problems

